Reduction of the Resonance Error - Part 1: Approximation of Homogenized Coefficients
نویسندگان
چکیده
This paper is concerned with the approximation of effective coefficients in homogenization of linear elliptic equations. One common drawback among numerical homogenization methods is the presence of the so-called resonance error, which roughly speaking is a function of the ratio ε/η, where η is a typical macroscopic lengthscale and ε is the typical size of the heterogeneities. In the present work, we propose an alternative for the computation of homogenized coefficients (or more generally a modified cell-problem), which is a first brick in the design of effective numerical homogenization methods. We show that this approach drastically reduces the resonance error in some standard cases.
منابع مشابه
Spectral Measure and Approximation of Homogenized Coefficients
Abstract. This article deals with the numerical approximation of effective coefficients in stochastic homogenization of discrete linear elliptic equations. The originality of this work is the use of a well-known abstract spectral representation formula to design and analyze effective and computable approximations of the homogenized coefficients. In particular, we show that information on the ed...
متن کاملQuantitative Version of the Kipnis-varadhan Theorem and Monte-carlo Approximation of Homogenized Coefficients
Abstract. This article is devoted to the analysis of a Monte-Carlo method to approximate effective coefficients in stochastic homogenization of discrete elliptic equations. We consider the case of independent and identically distributed coefficients, and adopt the point of view of the random walk in a random environment. Given some final time t > 0, a natural approximation of the homogenized co...
متن کاملA Flexible Link Radar Control Based on Type-2 Fuzzy Systems
An adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented in this paper. The capability of the proposed method (we named ANFIS2) for function approximation and dynamical system identification is remarkable. The structure o...
متن کاملAn Optimal Error Estimate in Stochastic Homogenization of Discrete Elliptic Equations1 by Antoine Gloria and Felix Otto
This paper is the companion article to [Ann. Probab. 39 (2011) 779–856]. We consider a discrete elliptic equation on the d-dimensional lattice Zd with random coefficients A of the simplest type: They are identically distributed and independent from edge to edge. On scales large w.r.t. the lattice spacing (i.e., unity), the solution operator is known to behave like the solution operator of a (co...
متن کاملSignal detection Using Rational Function Curve Fitting
In this manuscript, we proposed a new scheme in communication signal detection which is respect to the curve shape of received signal and based on the extraction of curve fitting (CF) features. This feature extraction technique is proposed for signal data classification in receiver. The proposed scheme is based on curve fitting and approximation of rational fraction coefficients. For each symbo...
متن کامل